About us Insights Jobs

RGPNet: A Real-Time General Purpose Semantic Segmentation

We propose a novel real-time general purpose semantic segmentation architecture, called RGPNet, which achieves significant performance gain in complex environments. RGPNet consists of a light-weight asymmetric encoder-decoder and an adaptor. The adaptor helps preserve and refine the abstract concepts from multiple levels of distributed representations between encoder and decoder. It also facilitates the gradient flow from deeper layers to shallower layers. Our extensive experiments highlight the superior performance of RGPNet compared to the state-of-the-art semantic segmentation networks. Moreover, towards green AI, we show that using an optimized label-relaxation technique with progressive resizing can reduce the training time by up to 60% while preserving the performance. We conclude that RGPNet obtains a better speed-accuracy trade-off across multiple datasets.

Read the full paper